Generalized Haar-like filters for document analysis : application to word (...) - neuviemeart2.0

accueil > recherche > thèses et mémoires > Generalized Haar-like filters for document analysis : application to word (...)

la Cité internationale de la bande dessinée et de l'image

Generalized Haar-like filters for document analysis : application to word spotting and text extraction from comics

thèse par Adam Ghorbel

sous la direction de Ogier, Jean-Marc - Vincent, Nicole

thèse de doctorat (2016) - Université La Rochelle - Informatique et applications

La Rochelle - France

Dans cette thèse, nous avons proposé une approche analytique multi-échelle pour le word spotting dans les documents manuscrits. Le modèle proposé fonctionne selon deux niveaux différents. Un module de filtrage global permettant de définir plusieurs zones candidates de la requête dans le document testé. Ensuite, l’échelle de l’observation est modifiée à un niveau inférieur afin d’affiner les résultats et sélectionner uniquement ceux qui sont vraiment pertinents. Cette approche de word spotting est basée sur des familles généralisées de filtres de Haar qui s’adaptent à chaque requête pour procéder au processus de spotting et aussi sur un principe de vote qui permet de choisir l’emplacement spatial où les réponses générées par les filtres sont accumulées. Nous avons en plus proposé une autre approche pour l’extraction de texte du graphique dans les bandes dessinées. Cette approche se base essentiellement sur les caractéristiques pseudo-Haar qui sont générées par l’application des filtres généralisés de Haar sur l’image de bande dessinée. Cette approche est une approche analytique et ne nécessite aucun processus d’extraction ni des bulles ni d’autres composants. - voir sur theses.fr

mots-clés : analyse de l'image ; informatique

Dans cette thèse, nous avons proposé une approche analytique multi-échelle pour le word spotting dans les documents manuscrits. Le modèle proposé fonctionne selon deux niveaux différents. Un module de filtrage global permettant de définir plusieurs zones candidates de la requête dans le document testé. Ensuite, l’échelle de l’observation est modifiée à un niveau inférieur afin d’affiner les résultats et sélectionner uniquement ceux qui sont vraiment pertinents. Cette approche de word spotting est basée sur des familles généralisées de filtres de Haar qui s’adaptent à chaque requête pour procéder au processus de spotting et aussi sur un principe de vote qui permet de choisir l’emplacement spatial où les réponses générées par les filtres sont accumulées. Nous avons en plus proposé une autre approche pour l’extraction de texte du graphique dans les bandes dessinées. Cette approche se base essentiellement sur les caractéristiques pseudo-Haar qui sont générées par l’application des filtres généralisés de Haar sur l’image de bande dessinée. Cette approche est une approche analytique et ne nécessite aucun processus d’extraction ni des bulles ni d’autres composants.


Voir en ligne : http://www.theses.fr/2016LAROS008